The artificial neural network approach based on uniform design to optimize the fed-batch fermentation condition: application to the production of iturin A
نویسندگان
چکیده
BACKGROUND Iturin A is a potential lipopeptide antibiotic produced by Bacillus subtilis. Optimization of iturin A yield by adding various concentrations of asparagine (Asn), glutamic acid (Glu) and proline (Pro) during the fed-batch fermentation process was studied using an artificial neural network-genetic algorithm (ANN-GA) and uniform design (UD). Here, ANN-GA based on the UD data was used for the first time to analyze the fed-batch fermentation process. The ANN-GA and UD methodologies were compared based on their fitting ability, prediction and generalization capacity and sensitivity analysis. RESULTS The ANN model based on the UD data performed well on minimal statistical designed experimental number and the optimum iturin A yield was 13364.5 ± 271.3 U/mL compared with a yield of 9929.0 ± 280.9 U/mL for the control (batch fermentation without adding the amino acids). The root-mean-square-error for the ANN model with the training set and test set was 4.84 and 273.58 respectively, which was more than two times better than that for the UD model (32.21 and 483.12). The correlation coefficient for the ANN model with training and test sets was 100% and 92.62%, respectively (compared with 99.86% and 78.58% for UD). The error% for ANN with the training and test sets was 0.093 and 2.19 respectively (compared with 0.26 and 4.15 for UD). The sensitivity analysis of both methods showed the comparable results. The predictive error of the optimal iturin A yield for ANN-GA and UD was 0.8% and 2.17%, respectively. CONCLUSIONS The satisfactory fitting and predicting accuracy of ANN indicated that ANN worked well with the UD data. Through ANN-GA, the iturin A yield was significantly increased by 34.6%. The fitness, prediction, and generalization capacities of the ANN model were better than those of the UD model. Further, although UD could get the insight information between variables directly, ANN was also demonstrated to be efficient in the sensitivity analysis. The results of these comparisons indicated that ANN could be a better alternative way for fermentation optimization with limited number of experiments.
منابع مشابه
Application of statistical techniques and artificial neural network to estimate force from sEMG signals
This paper presents an application of design of experiments techniques to determine the optimized parameters of artificial neural network (ANN), which are used to estimate force from Electromyogram (sEMG) signals. The accuracy of ANN model is highly dependent on the network parameters settings. There are plenty of algorithms that are used to obtain the optimal ANN setting. However, to the best ...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملApplication of artificial neural network in deoxygenation of water by glucoseoxidase immobilized in calcium alginate/MnO2 composite
A three-layer artificial neural network (ANN) model was developed to predict the remained DO (deoxygenation) in water after DO removal with an enzymatic granular biocatalyst (GB), based on the experimental data obtained in a laboratory stirring batch study. The effects of operational parameters such as initial pH, initial glucose concentration and temperature on DO removal were investigated. On...
متن کاملModeling and Optimization of β-Cyclodextrin Production by Bacillus licheniformis using Artiïcial Neural Network and Genetic Algorithm
Background: The complexity of the fermentation processes is mainly due to the complex nature of the biological systems which follow the life in a non-linear manner. Joined performance of artificial neural network (ANN) and genetic algorithm (GA) in finding optimal solutions in experimentation has found to be superior compared to the statistical methods. Range of applications of β-cyclodextrin (...
متن کاملNeuro-Optimizer: A New Artificial Intelligent Optimization Tool and Its Application for Robot Optimal Controller Design
The main objective of this paper is to introduce a new intelligent optimization technique that uses a predictioncorrectionstrategy supported by a recurrent neural network for finding a near optimal solution of a givenobjective function. Recently there have been attempts for using artificial neural networks (ANNs) in optimizationproblems and some types of ANNs such as Hopfield network and Boltzm...
متن کامل